Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems

نویسندگان

  • Srabanti Chaudhury
  • Oleg A. Igoshin
چکیده

Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics--no matter how slow--will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Comparison of Direct and Indirect Optimization Techniques in Equilibrium Analysis of Multibody Dynamic Systems

The present paper describes a set of procedures for the solution of nonlinear static-equilibrium problems in the complex multibody mechanical systems. To find the equilibrium position of the system, five optimization techniques are used to minimize the total potential energy of the system. Comparisons are made between these techniques. A computer program is developed to evaluate the equality co...

متن کامل

Fuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems

In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...

متن کامل

Global stability of enzymatic chains of full reversible Michaelis-Menten reactions.

We consider a chain of metabolic reactions catalyzed by enzymes, of reversible Michaelis-Menten type with full dynamics, i.e. not reduced with any quasi-steady state approximations. We study the corresponding dynamical system and show its global stability if the equilibrium exists. If the system is open, the equilibrium may not exist. The main tool is monotone systems theory. Finally we study t...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

A NEW APPROACH TO STABILITY ANALYSIS OF FUZZY RELATIONAL MODEL OF DYNAMIC SYSTEMS

This paper investigates the stability analysis of fuzzy relational dynamic systems. A new approach is introduced and a set of sufficient conditions is derived which sustains the unique globally asymptotically stable equilibrium point in a first-order fuzzy relational dynamic system with sumproduct fuzzy composition. This approach is also investigated for other types of fuzzy relational composit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010